Operating Procedure and Specifications
Part 1: Loading the audio file
To load an audio file onto the Flash memory, the Nexys 2 board must be loaded with the Digilent reference design file. This allows Digilent MemUtil (link) to access the Flash memory.

In the MemUtil program, select the “Properties” tab, and then select “Nexys (16MB Flash, 16MB RAM)”. Then, select the “Erase Flash” tab and select “Erase All”. Flash memory must be erased every time a new file is loaded, or the Flash will contain the logical OR of the new file and the old file (subsequently jacking up the audio playback). After that, select the “Load Flash” tab, browse to the desired audio file, and enter “0” for the file start location. Under “Flash Memory Destination Address”, enter “0” for the start address and the file size rounded up to the next even byte for the length. Uncheck “Auto erase before programming” (Note: erasing Flash must be done as a separate step; attempting to auto-erase causes it to run off the end of the Flash memory, which will freeze the program and the USB driver and necessitate a redo of this entire procedure). Then, select “Load” to load the Flash memory, which will take a few minutes.
8-bit audio files must be saved as unsigned, and 16-bit audio files must be saved as big-endian. These settings can be found in Cool Edit Pro, and there are probably several freeware utilities that can save raw PCM audio as well. Cool Edit Pro has the added features of being able to dither the output, which will make the audio sound better when requantized to 8 or 12 bits, and normalizing audio files, which will eliminate clipping caused by the amplitude changing too quickly. Audio should be normalized to -4 dB for best results.
Part 2: Playing the audio file
After loading an audio file, its parameters must be set by changing the global variables in the software (BITS, SAMPLE_RATE, and CHANNELS) to the appropriate values. In main(), the song artist and title (up to 16 characters) is sent to the LCD when the system is started. Then, update the bitstream in the EDK and load the download.bit file onto the Nexys 2 board to start playback.
Volume can be adjusted in increments of about 3 dB, displayed as integers from 0 to 10. Use BTN3 to increase the volume and BTN2 to decrease the volume. BTN1 resets the system, which will restart audio playback. A status message with the new volume will be printed to the LCD.
During playback, the minutes and seconds for the song will be printed to the LCD, and the LEDs will light up from right to left with the current dB level in increments of 3.5 dB per LED.
Hardware Architecture

The hardware for this system consists of the following:

· 1 MicroBlaze processor: The MicroBlaze processor is configured with all settings enabled to ensure the fastest processing of audio samples.
· 16 KB of BRAM for the audio player: The audio player program does not fit in 8 KB of BRAM, so the size has been doubled.

· 2 OPB External Memory Controllers (EMCs): Two OPB EMCs are used to interface with the 16MB Flash and 16MB of RAM on the Nexys 2 through a MUX and two signal splitters.
· 3 OPB GPIOs for the DAC: The DAC is connected using 3 GPIOs to generate the SCLK, SYNC, DIN1 (left) and DIN2 (right) signals. The OPB SPI cannot properly output multiple data lines without using multiple slaves, which would lead to a noticeable time delay between the left and right channels on the DAC.
· 2 OPB GPIOs for the LCD: These GPIOs connect to the data and control lines on the LCD.
· 1 OPB GPIO for the LEDs: The LEDs light up from right to left for every 3.5dB of audio level.
· 1 OPB GPIO for the buttons: The buttons are used to restart the song and to increase and decrease volume. This generates interrupts to the INTC.
· 2 OPB timer peripherals: Three OPB timers are required for the system, and each peripheral has 2 timers that generate interrupts to the INTC
· 1 OPB INTC: The OPB interrupt controller provides an interface between the software and the 3 interrupts by assigning interrupt request numbers. MicroBlaze can then choose the correct function to do for the interrupt.

· 1 Memory Multiplexer: This IP core from Digilent is a simple multiplexer that allows the Nexys 2
to interface with the OPB EMCs in the EDK.
A block diagram for this circuit is on the next page.

[image: image1.jpg]sys_clk

£l OPB_Clk

rst

sys_rst

Intr (2)

Intr

Intr (1) ublaze_INTERRUPT

Intr (0)

btn_GPIO_in
btn_pin %
led_ctrl
led_ctrl_GPIO_IO
SOPB GPIO_IO (0:2) < Ied_ctri_pin
lcd_data
lcd_data_GPIO_IO
SOPB GPIO_IO (07) < Icd_data_pin
led
led_GPIO_IO
SOPB GPIO_IO (07) < led_pin

OPB_Rst

btn
IP2INTC_Irpt

SOPB

GPIO_in (0:2)

dac_data
dac_data_GPIO_IO
SOPB GPIO_IO (0:1) < dac_data_pin
dac_sync
SOPB GPIo_Jof 92eme GPIOI0_ yac sync_pin
dac_sclk
SOPB cpio_jof 42esAk GPIOI0 yac scik_pin

Intr (2)

Intr (1)

flash_MEM_DQ_I

&

flash
Mem RPN

Mem_CEN

0:15)

ram_MEM_DQ_|

—A——

ram
Mem_BEN (0:1)|

Mem_CEN
Mem_WEN

Mem_OEN

MEM_DQ_I (0:15)

MEM_DQ_T (0:15)

MEM_DQ_O (0:15)

flash_Mem_A_split

flash_Mem RPN .
== mem_rpn_pin

f ram_Mem_BEN

flash_Mem CEN

flash_Mem WEN

flash_Mem OEN

flash_MEM_DQ_T

0
flash_MEM_DQ_O

5
ram_Mem_CEN

ram_Mem_WEN

ram_Mem_OEN

ram_MEM_DQ_T

&

ram_MEM_DQ_O

&

flash_Mem_A_mux

sig (0:31) Outt (8:30)|

ram_Mem_A_spiit

¢a

flash_split

ram_Mem_A_mux

sig (0:31) Outt (8:30)| %

mem_ben_pin

mem_mux_DQ
e mem_dqg_pin

PQF.T (0:15) mem_mux_CEN_F_O

- mem_cen_f_o_pin
Da_F_o (015
mem mux CENM.O mem_cen_m_o_pin

mem mi OEN__ e gen_pin

mem_mux_A_Out

4 mem_a_pin
mem mx WEN _ em_wen_pin
flash_MEM_DQ_|

DQ_F_I (0:15)] b

DQ_M_T (0:15)

ram_MEM_DQ_|

DQ_M_I (0:15)| i

DQ_M_0 (0:15)

ram_split

Software Architecture

The software architecture consists of the following functions, separated by category:

Main: The main function runs the initializers, enables interrupts, sends a message with an editable artist and song message up to 16 characters each, and goes into an idle loop.
Interrupt handlers: The main handler translates the interrupts from the INTC into calls to the appropriate secondary interrupt handler.

Requantizer: The requantizer requantizes the samples, which have ranges from 0 to 255 and -32767 to 32768 for 8-bit and 16-bit audio. Samples must be read in 2-byte chunks, so the second byte must be saved as the next sample for 8-bit mono.

Button translator: Translates button inputs to global variables referenced by other functions.

Message handler: Translates strings into commands to the LCD through a character printer.
Timer commands: Translates a countdown value into XIo_Out32() instructions to the OPB timers.
Buffering: Reading from a buffer failed to work when tested, so this was disabled.
System Integration

For this particular program we adopted the strategy of testing out each part of our program as we went along in order to make system integration run more smoothly. We started out with initializing the OPB SPI interface in order to make sure that we get output from DAC when any input is applied. Then if our song didn’t play properly we knew at least our interfacing worked. Then we used the code for the song and clarified that everything there was working properly. We also initialized the LCD once again as we have in previous labs. This was so we could have the display of the name of our song, the volume level from 0 to 10, the time that has elapsed since the song has been playing. We used buttons in lab 4, so we could just copy the code from lab 4 for the most part and implement it in our design. We used btn 4 to increase the volume while btn3 to decrease it. Also, we set up btn2 so that it would restart the song. We then wrote out the UCF files and finally were able to download the hardware bit and test everything out.

Number of slices: 2984/4656 (64%)

Size of program: 11562/16384 (71%)
Conclusion
In this lab we utilized knowledge gained in past experiments as well as new methods and techniques in order to store an audio file on our Nexys 2 board. Along with having our audio file stored on the flash memory of our Nexys board we were able to listen to the audio file by connecting 3 wires from the headphone input jack to the DAC.

